[A13] 用非线性半群方法研究分数阶 𝑝-Laplacian 的 Neumann 问题(二)

\quad\quad在文章 A11 中已经用非线性半群方法证明了 1<p<+\infty 时分数阶 p-Laplacian 演化方程的 Neumann 问题的解的存在唯一性. 本文研究 p=1 情形下的分数阶 p-Laplacian,即分数阶 1-Laplacian 的 Neumann 问题. 现在先给出分数阶 1-Laplacian 的 Neumann 问题 -\Delta_{\Omega, 1}^{s} u=f 的弱解定义. 设 f \in L^2(\Omega),称 u \in W^{s,1}(\Omega)-\Delta_{\Omega, 1}^{s} u(x)=f(x), \ x \in \Omega 的弱解,当且仅当存在 \eta \in L^{\infty}(\Omega \times \Omega),对几乎所有的 (x,y) \in \Omega \times \Omega 都有 \eta(x,y)=-\eta(y,x)\| \eta \|_{L^{\infty}(\Omega \times \Omega)} \leqslant 1\eta \in \mathrm{sgn}(u(y)-u(x)),且对任意 \varphi \in W^{s, 1}(\Omega) \cap L^{2}(\Omega) 都有 \frac{1}{2} \int_{\Omega} \int_{\Omega} \frac{1}{|x-y|^{N+s}} \eta(x,y) (\varphi(y)-\varphi(x)) \mathrm{d} y\mathrm{d} x =\int_{\Omega} f(x) \varphi(x) \mathrm{d} x, 我们的目标是研究演化问题 \begin{array}{ll} u_{t}(t, x)=\Delta_{\Omega, 1}^{s} u(t, x), & (x,t)\in(0, T) \times \Omega, \\[.8ex] u(0, x)=u_{0}(x), & x \in \Omega, \end{array} 给定 u_0 \in L^2(\Omega),称 u 为上述演化问题在 [0,T] 中的解,当且仅当 u \in W^{1,1}(0,T;L^2(\Omega))u(0,\cdot)=u_0 ,存在 \eta(t,\cdot,\cdot) \in L^{\infty}(\Omega \times \Omega),对几乎所有的 (x,y) \in \Omega \times \Omega 都有 \eta(t,x,y)=-\eta(t,y,x)\| \eta(t,\cdot,\cdot) \|_{L^{\infty}(\Omega \times \Omega)} \leqslant 1\eta(t,x,y) \in \mathrm{sgn}(u(t,y)-u(t,x)),且对任意 \varphi \in W^{s, 1}(\Omega) \cap L^{2}(\Omega) 都有 \frac{1}{2} \int_{\Omega} \int_{\Omega} \frac{1}{|x-y|^{N+s}}\eta(t,x,y)(\varphi(y)-\varphi(x)) \mathrm{d} y\mathrm{d} x =-\int_{\Omega} u_t(t,x) \varphi(x) \mathrm{d} x. \quad\quad定义能量泛函 \mathcal{N}_{1}^{s}: L^{2}(\Omega) \rightarrow[0, \infty),它由 \mathcal{N}_{1}^{s}(u)=\left\{\begin{array}{ll} \displaystyle\frac{1}{2} \int_{\Omega} \int_{\Omega} \frac{1}{|x-y|^{N+s }}|u(y)-u(x)| \mathrm{d} x \mathrm{d} y & ,u \in W^{s, 1}(\Omega) \cap L^{2}(\Omega), \\ +\infty & , u \in L^{2}(\Omega) \backslash W^{s, 1}(\Omega), \end{array}\right.给出,它是凸的(利用 t \mapsto |t| 的凸性)且在 L^2(\Omega) 中是下半连续的(利用 Fatou 引理). 再定义算子 N_{1,s} 的图. 记 (u,v) \in G(N_{1,s}) 当且仅当 u,v \in L^2(\Omega) , u \in W^{s,1}(\Omega)u-\Delta_{\Omega, 1}^{s} u(x)=v(x), x \in \Omega 的弱解. 为证明演化问题解的存在唯一性,只需分别验证 N_{1,s} 在是 L^2(\Omega)m-完全增生的,D(N_{1,s})L^2(\Omega) 中稠密,以及 G(N_{p,s}) = \partial \mathcal{N}_{1}^{s}.
\quad\quad首先证明 N_{1,s} 在是 L^2(\Omega)m-完全增生的. 取 (u_i,v_i) \in G(N_{1,s}),\ i=1,2,\ q \in \mathbf{P}_0,由定义可知 u_1,u_2 \in W^{s,1}(\Omega),且存在 \eta_i \in L^{\infty}(\Omega \times \Omega),对几乎所有的 (x,y) \in \Omega \times \Omega 都有 \eta_i(x,y)=-\eta_i(y,x)\| \eta_i \|_{L^{\infty}(\Omega \times \Omega)} \leqslant 1\eta_i \in \mathrm{sgn}(u_i(y)-u_i(x)),且对任意 \varphi \in W^{s, 1}(\Omega) \cap L^{2}(\Omega) 都有 \frac{1}{2} \int_{\Omega} \int_{\Omega} \frac{1}{|x-y|^{N+s}} \eta_i(x,y) (\varphi(y)-\varphi(x)) \mathrm{d} y\mathrm{d} x =\int_{\Omega} f(x) \varphi(x) \mathrm{d} x,q(u_1-u_2) \in W^{s,1}(\Omega) \cap L^{\infty}(\Omega) 为测试函数便有\begin{aligned} &\int_{\Omega}\left(v_{1}(x)-v_{2}(x)\right) q\left(u_{1}(x)-u_{2}(x)\right) \mathrm{d} x \\ = & \frac{1}{2} \int_{\Omega} \int_{\Omega} \frac{\eta_{1}(x,y)-\eta_{2}(x,y)}{|x-y|^{N+s}} \left(q\left(u_{1}(y)-u_{2}(y)\right)-q\left(u_{1}(x)-u_{2}(x)\right)\right) \mathrm{d} y \mathrm{d} x \\ = &\frac{1}{2} \iint\limits_{\{(x,y):u_1(y) \ne u_1(x), u_2(y)=u_2(x)\}} \frac{\eta_{1}(x,y)-\eta_{2}(x,y)}{|x-y|^{N+s}} \left(q\left(u_{1}(y)-u_{2}(y)\right)-q\left(u_{1}(x)-u_{2}(x)\right)\right) \mathrm{d} x \mathrm{d} y \\ & + \frac{1}{2} \iint\limits_{\{(x,y):u_1(y) = u_1(x), u_2(y) \ne u_2(x)\}} \frac{\eta_{1}(x,y)-\eta_{2}(x,y)}{|x-y|^{N+s}} \left(q\left(u_{1}(y)-u_{2}(y)\right)-q\left(u_{1}(x)-u_{2}(x)\right)\right) \mathrm{d} x \mathrm{d} y \\ & + \frac{1}{2} \iint\limits_{\{(x,y):u_1(y) \ne u_1(x), u_2(y) \ne u_2(x)\}} \frac{\eta_{1}(x,y)-\eta_{2}(x,y)}{|x-y|^{N+s}} \left(q\left(u_{1}(y)-u_{2}(y)\right)-q\left(u_{1}(x)-u_{2}(x)\right)\right) \mathrm{d} x \mathrm{d} y \\ \geqslant & \ 0 , \end{aligned}上式非负是因为 q 是单调上升的,且 \mathrm{sgn}(\cdot) 也可视为单调不减的函数. 因此,N_{1,s}L^2(\Omega) 上是完全增生的. 接下来要验证值域条件 L^2(\Omega) \subset R(\mathrm{I} + N_{1,s}). 对于 1<p<\dfrac{N}{s},取 s_p = \dfrac{N}{(p^*)'},其中 p^*=\dfrac{Np}{N-sp}p 的分数阶 Sobolev 共轭指数,那么对于所有 1<p<(N^*)' 都有 0< s_p = \dfrac{N}{(p^*)'} = N +s - \dfrac{N}{p} < N +s - \dfrac{N}{(N^*)'} = N+s-\dfrac{N}{\dfrac{N}{N+s-1}}=1,那么取定 f \in L^2(\Omega),对于 1 < p < (N^*)' 借助 p > 1 时对分数阶 p-Laplacian 的 Neumann 问题的研究,存在 u_p \in W^{s_p, p}(\Omega) 使得 (u_p, f-u_p) \in G(N_{p,s_p}). 注意到 N+s_p p =(N+s)p,由 N_{p,s_p} 的定义,对任意 \varphi \in W^{s_p, p}(\Omega) \cap L^{2}(\Omega) 都有\frac{1}{2} \int_{\Omega} \int_{\Omega} \frac{|u_p(y)-u_p(x)|^{p-2}}{|x-y|^{(N+s)p}}(u_p(y)-u_p(x))(\varphi(y)-\varphi(x)) \mathrm{d} y\mathrm{d} x =\int_{\Omega} (f(x)-u_p(x)) \varphi(x) \mathrm{d} x,\tag{1}另外,由于 N_{p,s_p} 是完全增生的,且 0 \in N_{p,s_p}(0),由完全增生算子的定义有 u_p \ll f,即对于任意 j \in \mathbf{J}_0 都有\ \displaystyle \int_{\Omega}j(u_p) \mathrm{d} x \leqslant \int_{\Omega}j(f) \mathrm{d} x,其中 \mathbf{J}_0 表示满足 j(0)=0 且凸、下半连续的映射 j:\mathbb{R} \to [0,\infty] 全体. 那么对于任意 1 < p < (N^*)'1 \leqslant q \leqslant 2,就有 \|u_p\|_{L^q(\Omega)} \leqslant \|f\|_{L^q(\Omega)}. 利用 L^2(\Omega) 的自反性可知存在单调下降趋于 1 的序列 p_n,使得 \{u_{p_n}\} 的一个子列在 L^2(\Omega) 中弱收敛,记此弱极限为 u,则 \|u\|_{L^2(\Omega)} \leqslant \|f\|_{L^2(\Omega)}. 另一方面,将 \varphi 取成 u_p便得到 \frac{1}{2} \int_{\Omega} \int_{\Omega} \frac{1}{|x-y|^{(N+s) p} }\left|u_{p}(y)-u_{p}(x)\right|^{p} \mathrm{d} y \mathrm{d} x=\int_{\Omega}\left(f(x)-u_{p}(x)\right) u_{p}(x) \mathrm{d} x, \tag{2}右端显然是有界的,再由 Hölder 不等式又有 \int_{\Omega} \int_{\Omega} \frac{\left|u_{p}(y)-u_{p}(x)\right|}{|x-y|^{N+s}} \mathrm{d} y \mathrm{d} x \leqslant \left(\int_{\Omega} \int_{\Omega} \frac{\left|u_{p}(y)-u_{p}(x)\right|^{p}}{|x-y|^{(N+s) p}} \mathrm{d} y \mathrm{d} x\right)^{\frac{1}{p}}|\Omega \times \Omega|^{\frac{1}{p'}},因此 \{u_p\} 包含在 W^{s,1}(\Omega) 的一个闭球中,由分数阶 Sobolev 空间的紧嵌入定理,对于具有 Lipschitz 边界的有界区域 \OmegaW^{s,1}(\Omega) 中的任何闭球在 L^{1}(\Omega) 中都是列紧的,从而前面在 \{u_{p_n}\} 中抽出的子列在 L^{1}(\Omega) 中存在强收敛子列,这说明该子列在 L^{1}(\Omega) 中收敛到 u,再由半范数 [\cdot]_{W^{s,1}(\Omega)}L^{1}(\Omega) 的下半连续性(利用 Fatou 引理)便又有 u \in W^{s,1}(\Omega). 对于 k>0,定义C_{p, k}:=\left\{(x, y) \in \Omega \times \Omega:\left|\frac{u_{p}(y)-u_{p}(x)}{|x-y|^{N+s}}\right|>k\right\},|C_{p, k}|=\int_{C_{p, k}} \mathrm{d} x \mathrm{d} y \leqslant \int_{\Omega} \int_{\Omega} \mathrm{d} x \mathrm{d} y \leqslant \dfrac{1}{k^p} \int_{\Omega} \int_{\Omega} \frac{\left|u_{p}(y)-u_{p}(x)\right|^{p}}{|x-y|^{(N+s) p} } \mathrm{d} y \mathrm{d} x =\dfrac{C}{k^p}, \tag{3}另一方面,对任意 (x,y) \in \Omega \times \Omega 都有 \left| \left| \frac{u_{p}(y)-u_{p}(x)}{|x-y|^{N+s}}\right|^{p-2} \frac{u_{p}(y)-u_{p}(x)}{|x-y|^{N+s}} \mathbf{1}_{\Omega \times \Omega \backslash C_{p, k}}(x, y) \right| \leqslant \left| \frac{u_{p}(y)-u_{p}(x)}{|x-y|^{N+s}}\right|^{p-1} \leqslant k^{p-1}, 对任意的 k \in \mathbb{N},可在之前从 \{u_{p_n}\} 取出的子列中再取子列,在这里将其记成 \{u_{p_{n_j^k}}\}_j,这并不会造成歧义,利用 L^1(\Omega) 的可分性,由 Banach-Alaoglu 定理可知存在这样的子列使得 \left| \frac{u_{p_{n_j^k}}(y)-u_{p_{n_j^k}}(x)}{|x-y|^{N+s}}\right|^{p_{n_j^k}-2} \frac{u_{p_{n_j^k}}(y)-u_{p_{n_j^k}}(x)}{|x-y|^{N+s}} \mathbf{1}_{\Omega \times \Omega \backslash C_{p_{n_j^k}, k}}(x, y) L^{\infty}(\Omega \times \Omega) 中弱*收敛到 \eta_k,且 \eta_k(x,y)=-\eta_k(y,x)\| \eta_k \|_{L^{\infty}(\Omega \times \Omega)} \leqslant 1,再取 \eta_k 的子列 \{\eta_{k_j}\}_j 使得 \eta_{k_j}L^{\infty}(\Omega \times \Omega) 中弱*收敛到 \eta,且 \eta(x,y)=-\eta(y,x)\| \eta \|_{L^{\infty}(\Omega \times \Omega)} \leqslant 1. 下面来展示逼近过程中如何将极限和积分交换顺序. 首先取 \varphi \in C^{\infty}(\overline{\Omega}) \cap W^{s_{q_0},q_0}(\Omega) ,其中 p < q_0 < (N^*)'0<s_{q_0}<1. 固定 k \in \mathbb{N},由 (1) 得到 \begin{aligned} &\frac{1}{2} \int_{\Omega} \int_{\Omega} \left|\frac{u_{p_{n_{j}^{k}}}(y)-u_{p_{n_{j}^{k}}}(x)}{|x-y|^{N+s}}\right|^{p_{n_{j}^{k}}-2} \frac{u_{p_{n_{j}^{k}}}(y)-u_{p_{n_{j}^{k}}}(x)}{|x-y|^{N+s}} \mathbf{1}_{\Omega \times \Omega \backslash C_{p_{n_{j}^{k}, k}}} \frac{\varphi(y)-\varphi(x)}{|x-y|^{N+s}} \mathrm{d} y \mathrm{d} x -\int_{\Omega}(f-u_{p_{n_{j}^{k}}}) \varphi \mathrm{d} x\\ =&-\frac{1}{2} \int_{\Omega} \int_{\Omega} \left|\frac{u_{p_{n_{j}^{k}}}(y)-u_{p_{n_{j}^{k}}}(x)}{|x-y|^{N+s}}\right|^{p_{n_{j}^{k}}-2} \frac{u_{p_{n_{j}^{k}}}(y)-u_{p_{n_{j}^{k}}}(x)}{|x-y|^{N+s}} \mathbf{1}_{C_{p_{n_{j}^{k}}, k}} \frac{\varphi(y)-\varphi(x)}{|x-y|^{N+s}} \mathrm{d} y \mathrm{d} x, \quad \quad \quad \quad \quad \quad \ \ \ (4) \end{aligned}既然 p_{n_{j}^{k}}<q_0,由 Hölder 不等式结合 (2)(3) 就有 \begin{aligned} &\left|\int_{\Omega}\int_{\Omega}\left| \frac{u_{p_{n_{j}^{k}}}(y)-u_{p_{n_{j}^{k}}}(x)}{|x-y|^{N+s}}\right|^{p_{n_{j}^{k}}-2} \frac{u_{p_{n_{j}^{k}}}(y)-u_{p_{n_{j}^{k}}}(x)}{|x-y|^{N+s}} \mathbf{1}_{C_{p_{n_{j}^{k}}, k}}(x, y) \frac{\varphi(y)-\varphi(x)}{|x-y|^{N+s}} \mathrm{d} y \mathrm{d} x \right| \\ \leqslant&\left(\int_{\Omega}\int_{\Omega}\left|\frac{u_{p_{n_{j}^{k}}}(y)-u_{p_{n_{j}^{k}}}(x)}{|x-y|^{N+s}}\right|^{p_{n_{j}^{k}}} \mathrm{d} y \mathrm{d} x\right)^{\frac{p_{n_{j}^{k}}-1}{p_{n_{j}^{k}}}} \left(\int_{C_{p_{n_{j}^{k}}, k}}\left|\frac{\varphi(y)-\varphi(x)}{|x-y|^{N+s}}\right|^{p_{n_{j}^{k}}} \mathrm{d} y \mathrm{d} x\right)^{\frac{1}{p_{n_{j}^{k}}}} \\ \leqslant&\left(\int_{\Omega} \int_{\Omega} \left|\frac{u_{p_{n_{j}^{k}}}(y)-u_{p_{n_{j}^{k}}}(x)}{|x-y|^{N+s}}\right|^{p_{n_{j}^{k}}} \mathrm{d} y \mathrm{d} x\right)^{\frac{p_{n_{j}^{k}}-1}{p_{n_{j}^{k}}}} \left(\int_{C_{p_{n_{j}^{k}}, k}}\left|\frac{\varphi(y)-\varphi(x)}{|x-y|^{N+s}}\right|^{q_{0}} \mathrm{d} y \mathrm{d} x\right)^{\frac{1}{q_{0}}}|C_{p_{n_{j}^{k}}, k}|^{\frac{q_{0}-p_{n_{j}^{k}}}{p_{n_{j}^{k}}q_{0}}} \\ =&\left(\int_{\Omega}\int_{\Omega}\left|\frac{u_{p_{n_{j}^{k}}}(y)-u_{p_{n_{j}^{k}}}(x)}{|x-y|^{N+s}}\right|^{p_{n_{j}^{k}}} \mathrm{d} y \mathrm{d} x\right)^{\frac{p_{n_{j}^{k}}-1}{p_{n_{j}^{k}}}} \left(\int_{C_{p_{n_{j}^{k}}, k}} \frac{|\varphi(y)-\varphi(x)|^{q_{0}}}{|x-y|^{N+s_{q_0} q_{0}}} \mathrm{d} y \mathrm{d} x\right)^{\frac{1}{q_{0}}}|C_{p_{n_{j}^{k}}, k}|^{\frac{q_{0}-p_{n_{j}^{k}}}{p_{n_{j}^{k}}q_{0}}} \\ \leqslant& \frac{C_{\varphi}}{k^{\frac{q_{0}-p_{n_{j}^{k}}}{q_{0}}}},\\ \end{aligned}(4) 中令 j \to \infty,结合上式就有 \left|\frac{1}{2} \int_{\Omega} \int_{\Omega} \frac{1}{|x-y|^{N+s}} \eta_{k}(x, y)(\varphi(y)-\varphi(x)) \mathrm{d} y \mathrm{d} x-\int_{\Omega}(f(x)-u(x)) \varphi(x) \mathrm{d} x\right| \leqslant \frac{C_{\varphi}}{k},特别地,\left|\frac{1}{2} \int_{\Omega} \int_{\Omega} \frac{1}{|x-y|^{N+s}} \eta_{k_j}(x, y)(\varphi(y)-\varphi(x)) \mathrm{d} y \mathrm{d} x-\int_{\Omega}(f(x)-u(x)) \varphi(x) \mathrm{d} x\right| \leqslant \frac{C_{\varphi}}{k_j},再在上式中令 j \to \infty 就得到 \frac{1}{2} \int_{\Omega} \int_{\Omega} \frac{1}{|x-y|^{N+s}} \eta(x, y) (\varphi(y)-\varphi(x)) \mathrm{d} y \mathrm{d} x-\int_{\Omega}(f(x)-u(x)) \varphi(x) \mathrm{d} x = 0, \tag{5}接下来考虑 \varphi \in W^{s, 1}(\Omega) \cap L^{2}(\Omega) 的情况. 利用 C^{\infty}(\overline{\Omega})W^{s, 1}(\Omega) 中稠密可知存在 \varphi_n \in C^{\infty}(\overline{\Omega}) 使得 \varphi_nL^{2}(\Omega) 中收敛到 \varphi[\varphi_n]_{W^{s, 1}(\Omega)} \to [\varphi]_{W^{s, 1}(\Omega)}, n \to \infty. 由 (5) 和 Fatou 引理有 \begin{aligned} &\frac{1}{2} \int_{\Omega} \int_{\Omega}\left(\frac{1}{|x-y|^{N+s}}|\varphi(y)-\varphi(x)|-\frac{1}{|x-y|^{N+s}} \eta(x, y)(\varphi(y)-\varphi(x))\right) \mathrm{d} y \mathrm{d} x \\ \leqslant& \underset{n \to \infty}{\underline{\text{lim}}} \frac{1}{2} \int_{\Omega} \int_{\Omega}\left(\frac{1}{|x-y|^{N+s}}\left|\varphi_{n}(y)-\varphi_{n}(x)\right|-\frac{1}{|x-y|^{N+s}} \eta(x, y)\left(\varphi_{n}(y)-\varphi_{n}(x)\right)\right) \mathrm{d} y \mathrm{d} x \\ =&\frac{1}{2} \int_{\Omega} \int_{\Omega} \frac{1}{|x-y|^{N+s}}|\varphi(y)-\varphi(x)| \mathrm{d} y \mathrm{d} x-\int_{\Omega}(f(x)-u(x)) \varphi(x) \mathrm{d} x, \end{aligned}即对所有 \varphi \in W^{s, 1}(\Omega) \cap L^{2}(\Omega) 都成立 \frac{1}{2} \int_{\Omega} \int_{\Omega}\frac{1}{|x-y|^{N+s}} \eta(x, y) (\varphi(y)-\varphi(x)) \mathrm{d} y \mathrm{d} x -\int_{\Omega}(f(x)-u(x)) \varphi(x) \mathrm{d} x \geqslant 0, 而上式对 -\varphi 也成立,故对所有 \varphi \in W^{s, 1}(\Omega) \cap L^{2}(\Omega) 都有 \frac{1}{2} \int_{\Omega} \int_{\Omega}\frac{1}{|x-y|^{N+s}} \eta(x, y) (\varphi(y)-\varphi(x)) \mathrm{d} y \mathrm{d} x -\int_{\Omega}(f(x)-u(x)) \varphi(x) \mathrm{d} x = 0, \tag{6}为了完成 L^2(\Omega) \subset R(\mathrm{I} + N_{1,s}) 的证明,只需要再验证 \eta(x,y) \in \mathrm{sgn}(u(y)-u(x)), \mathrm{a.e.}\ (x,y) \in \Omega \times \Omega. 在 (2) 中将 u_p 取成之前在 u_{p_n} 中取出的子列,它在 L^2(\Omega) 中弱收敛到 u,在这里仍将其记作 u_{p_n}. 在 (6) 中取 \varphi = u,就得到 \begin{aligned} &\frac{1}{2} \int_{\Omega} \int_{\Omega} \frac{1}{|x-y|^{(N+s) p_{n}}}\left|u_{p_{n}}(y)-u_{p_{n}}(x)\right|^{p_{n}} \mathrm{d} y \mathrm{d} x\\ = &\int_{\Omega}\left(f(x)-u_{p_{n}}(x)\right) u_{p_{n}}(x) \mathrm{d} x \\ = & \int_{\Omega}\left(f-u + (u - u_{p_{n}})\right) \left(u - (u - u_{p_{n}}) \right) \mathrm{d} x \\ = & \int_{\Omega}(f-u) u \mathrm{d} x-\int_{\Omega} f(x)\left(u-u_{p_{n}}\right) \mathrm{d} x +2 \int_{\Omega} u\left(u-u_{p_{n}}\right) \mathrm{d} x-\int_{\Omega}(u-u_{p_{n}})^{2} \mathrm{d} x \\ \leqslant & \frac{1}{2} \int_{\Omega} \int_{\Omega} \frac{1}{|x-y|^{N+s}} \eta(x, y)(u(y)-u(x)) \mathrm{d} y \mathrm{d} x -\int_{\Omega} f\left(u-u_{p_{n}}\right) \mathrm{d} x +2 \int_{\Omega} u\left(u-u_{p_{n}}\right) \mathrm{d} x, \end{aligned}n \to \infty,得到 \underset{n \to \infty}{\overline{\text{lim}}} \frac{1}{2}\int_{\Omega} \int_{\Omega} \frac{1}{|x-y|^{(N+s) p_{n}}}\left|u_{p_{n}}(y)-u_{p_{n}}(x)\right|^{p_{n}} \mathrm{d} y \mathrm{d} x \leqslant \frac{1}{2}\int_{\Omega} \int_{\Omega} \frac{1}{|x-y|^{N+s}} \eta(x,y) (u(y) - u(x)) \mathrm{d} y \mathrm{d} x, 再利用 [\cdot]_{W^{s,1}(\Omega)}L^{1}(\Omega) 的下半连续性和 Hölder 不等式就有 \begin{aligned} &\frac{1}{2} \int_{\Omega} \int_{\Omega} \frac{1}{|x-y|^{N+s}}|u(y)-u(x)| \mathrm{d} y \mathrm{d} x \\ \leqslant& \underset{n \to \infty}{\underline{\text{lim}}} \frac{1}{2} \int_{\Omega} \int_{\Omega} \frac{1}{|x-y|^{N+s}}\left|u_{p_{n}}(y)-u_{p_{n}}(x)\right| \mathrm{d} y \mathrm{d} x \\ \leqslant&\underset{n \to \infty}{\underline{\text{lim}}} \frac{1}{2}\left(\int_{\Omega} \int_{\Omega} \frac{1}{|x-y|^{(N+s) p_{n}}}\left|u_{p_{n}}(y)-u_{p_{n}}(x)\right|^{p_{n}} \mathrm{d} y \mathrm{d} x\right)^{\frac{1}{p_{n}}}|\Omega \times \Omega|^{\frac{p_{n}-1}{p_{n}}}\\ \leqslant&\frac{1}{2} \int_{\Omega} \int_{\Omega} \frac{1}{|x-y|^{N+s}} \eta(x, y)(u(y)-u(x)) \mathrm{d} y \mathrm{d} x, \\ \end{aligned}结合 \| \eta \|_{L^{\infty}(\Omega \times \Omega)} \leqslant 1 就得到 \eta(x,y) \in \mathrm{sgn}(u(y)-u(x)), \mathrm{a.e.}\ (x,y) \in \Omega \times \Omega,至此终于完成了值域条件 L^2(\Omega) \subset R(\mathrm{I} + N_{1,s}) 的验证,故 N_{1,s} 在是 L^2(\Omega)m-完全增生的.
\quad\quad下面证明 D(N_{1,s})L^2(\Omega) 中稠密. 任取 v \in C^{\infty}(\overline{\Omega}),由 N_{1,s} 在是 L^2(\Omega)m-完全增生的可知存在 u_n \in D(N_{p,s}) 使得 (u_n, n(v-u_n)) \in G(N_{1,s}),由 N_{1,s} 的定义,存在 \eta_n \in L^{\infty}(\Omega \times \Omega),对几乎所有的 (x,y) \in \Omega \times \Omega 都有 \eta_n(x,y)=-\eta_n(y,x)\| \eta_n \|_{L^{\infty}(\Omega \times \Omega)} \leqslant 1\eta_n \in \mathrm{sgn}(u(y)-u(x)),且对任意的 \varphi \in W^{s, 1}(\Omega) \cap L^{2}(\Omega) 都有 \frac{1}{2} \int_{\Omega} \int_{\Omega} \frac{1}{|x-y|^{N+s}} \eta_n(x,y) (\varphi(y)-\varphi(x)) \mathrm{d} y\mathrm{d} x = n\int_{\Omega} (v(x)-u_n(x)) \varphi(x) \mathrm{d} x,现在取 \varphi = v - u_n,就有\begin{aligned} &\int_{\Omega}\left(v(x)-u_{n}(x)\right)^{2} \mathrm{d} x \\ =&\frac{1}{2 n} \int_{\Omega} \int_{\Omega} \frac{1}{|x-y|^{N+s}} \eta_{n}(x, y)\left(v(y)-u_{n}(y)-\left(v(x)-u_{n}(x)\right)\right) \mathrm{d} y \mathrm{d} x \\ \leqslant& \frac{1}{2 n} \int_{\Omega} \int_{\Omega} \frac{1}{|x-y|^{N+s}}|v(y)-v(x)| \mathrm{d} y \mathrm{d} x\\ =&\frac{1}{n}[v]_{W^{s, 1}(\Omega)}, \end{aligned}u_nL^2(\Omega) 中收敛到 v,这说明 D(N_{1,s})L^2(\Omega) 中稠密.
\quad\quad最后证明 G(N_{1,s}) = \partial \mathcal{N}_{1}^{s}. 按照定义,设 (u,v) \in G(N_{1,s}),存在 \eta \in L^{\infty}(\Omega \times \Omega),对几乎所有的 (x,y) \in \Omega \times \Omega 都有 \eta(x,y)=-\eta(y,x)\| \eta \|_{L^{\infty}(\Omega \times \Omega)} \leqslant 1\eta \in \mathrm{sgn}(u(y)-u(x)),且对任意的 \varphi \in W^{s, 1}(\Omega) \cap L^{2}(\Omega) 都有 \frac{1}{2} \int_{\Omega} \int_{\Omega} \frac{1}{|x-y|^{N+s}} \eta(x,y) (\varphi(y)-\varphi(x)) \mathrm{d} y\mathrm{d} x = \int_{\Omega} v(x) \varphi(x) \mathrm{d} x,\frac{1}{2} \int_{\Omega} \int_{\Omega} \frac{1}{|x-y|^{N+s}} |u(y)-u(x)| \mathrm{d} y \mathrm{d} x = \int_{\Omega} v(x) u(x) \mathrm{d} x,\varphi =w-u,利用 \eta(x,y)\mathrm{sgn}_0(w(y)-w(x)) \leqslant 1,\ \mathrm{a.e.} \ (x,y) \in \Omega \times \Omega 就有 \begin{aligned} & \int_{\Omega} v(x) (w(x)-u(x)) \mathrm{d} x\\ =& \frac{1}{2} \int_{\Omega} \int_{\Omega} \frac{1}{|x-y|^{N+s}} \eta(x,y) (w(y)-w(x)) \mathrm{d} y \mathrm{d} x - \mathcal{N}_{1}^{s}(u)\\ \leqslant & \mathcal{N}_{1}^{s}(w) - \mathcal{N}_{1}^{s}(u), \end{aligned}因此 v \in \partial \mathcal{N}_{1}^{s}(u),即 G(N_{1,s}) \subset \partial \mathcal{N}_{1}^{s},再利用 N_{1,s} 在是 L^2(\Omega)m-完全增生的就有 G(N_{1,s}) = \partial \mathcal{N}_{1}^{s}.
\quad\quad\quad以上是 Mazón 给出的证明方法,事实上对 (2) 的逼近还有另外一种方法,由 Tianling Gao 给出. 由 Hölder 不等式,对于任意 1<\sigma<\dfrac{p}{p-1},都有\begin{aligned} &\left\| \left| \frac{u_{p}(y)-u_{p}(x)}{|x-y|^{N+s}}\right|^{p-2} \frac{u_{p}(y)-u_{p}(x)}{|x-y|^{N+s}} \right\|_{L^{\sigma}(\Omega \times \Omega)}^{\sigma} \\ \leqslant & \left\| \left| \frac{u_{p}(y)-u_{p}(x)}{|x-y|^{N+s}}\right|^{p-2} \frac{u_{p}(y)-u_{p}(x)}{|x-y|^{N+s}} \right\|_{L^{\frac{p}{p-1} }(\Omega \times \Omega)}^{\sigma} |\Omega \times \Omega|^{1-\frac{p-1}{p} \sigma} \\ = & \left(\int_{\Omega} \int_{\Omega} \frac{\left|u_{p}(y)-u_{p}(x)\right|^p}{|x-y|^{N+s_p p}} \mathrm{d} y \mathrm{d} x \right)^{\frac{p-1}{p} \sigma} |\Omega \times \Omega|^{1-\frac{p-1}{p} \sigma} \\ \leqslant & \| u_p \|_{W^{s_p,p}(\Omega)}^{\frac{p-1}{p} \sigma} |\Omega \times \Omega|^{1-\frac{p-1}{p} \sigma}\\ \leqslant & C, \end{aligned} L^{\sigma}(\Omega \times \Omega) 的自反性,可在从 \{u_{p_n}\} 中抽出的在 L^{1}(\Omega) 中强收敛到 u 的子列中再取子列,仍将其记作 \{u_{p_{n}}\},使得在 L^{\sigma}(\Omega \times \Omega)\left| \frac{u_{p_{n}}(y)-u_{p_{n}}(x)}{|x-y|^{N+s}}\right|^{p-2} \frac{u_{p_{n}}(y)-u_{p_{n}}(x)}{|x-y|^{N+s}} \rightharpoonup \eta(x,y), \quad n \to \infty,其中 \eta \in L^{\sigma}(\Omega \times \Omega)\eta(x,y)=-\eta(y,x). 由 L^{\sigma} 范数的弱下半连续性,\| \eta \|_{L^{\sigma}(\Omega \times \Omega)}^{\sigma} \leqslant \underset{n \to \infty}{\underline{\text{lim}}} \left\| \left| \frac{u_{p_{n}}(y)-u_{p_{n}}(x)}{|x-y|^{N+s}}\right|^{p_n-2} \frac{u_{p_{n}}(y)-u_{p_{n}}(x)}{|x-y|^{N+s}} \right\|_{L^{\sigma}(\Omega \times \Omega)}^{\sigma} \leqslant C,\| \eta \|_{L^{\sigma}(\Omega \times \Omega)} \leqslant C^{\frac{1}{\sigma}} 中令 \sigma \to +\infty 就得到 \| \eta \|_{L^{\infty}(\Omega \times \Omega)} \leqslant 1. 取 \varphi \in C^{\infty}(\overline{\Omega}),则 \begin{aligned} &\frac{1}{2} \int_{\Omega} \int_{\Omega} \frac{1}{|x-y|^{N+s}} \eta(x,y) (\varphi(y)-\varphi(x))\mathrm{d} y \mathrm{d} x\\ =&\lim_{n \to \infty} \frac{1}{2} \int_{\Omega} \int_{\Omega} \frac{1}{|x-y|^{N+s}} \left| \frac{u_{p_n}(y)-u_{p_n}(x)}{|x-y|^{N+s}}\right|^{p_n-2} \frac{u_{p_n}(y)-u_{p_n}(x)}{|x-y|^{N+s}} (\varphi(y)-\varphi(x))\mathrm{d} y \mathrm{d} x\\ =&\lim_{n \to \infty} \frac{1}{2} \int_{\Omega} \int_{\Omega} \frac{1}{|x-y|^{N+s_{p_n} p_n}} \left|u_{p_{n}}(y)-u_{p_{n}}(x)\right|^{p_n-2} (u_{p_{n}}(y)-u_{p_{n}}(x)) (\varphi(y)-\varphi(x))\mathrm{d} y \mathrm{d} x \\ =&\lim_{n \to \infty} \int_{\Omega} \left(f(x)-u_{p_{n}}(x)\right) \varphi(x) \mathrm{d} x\\ =&\int_{\Omega} \left(f(x)-u(x)\right) \varphi(x) \mathrm{d} x, \end{aligned}此即 (5) 式,利用 C^{\infty}(\overline{\Omega})W^{s, 1}(\Omega) 中稠密可知其对任意 \varphi \in W^{s, 1}(\Omega) \cap L^{2}(\Omega) 都成立. 其余证明与 Mazón 给出的证法一致.

发表评论

您的电子邮箱地址不会被公开。